Tetrahedron Letters Vol. 21, pp 4869 - 4872 © Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/1208-4869802.00/0

NEW ROUTES TO 5,8,8-TRIPHENYLBENZO[c]HEPTAFULVENES FROM (3,4~BIS(DIPHENYLMETHYLENE)-2-OXOCYCLOBUTYLIDENE)TRIPHENYLPHOSPHORANE. ISOLATION OF EXCESSIVELY STABILIZED BETAINE

Fumio TODA and Koichi TANAKA

Department of Industrial Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan

 $Summary:$ Thermal isomerization of HBr salt of the title phosphorane gave (2-hydroxy-5,8,8-triphcnylbcnzo[c]hcptafulvenyl)triphenylphosphonium bromide, which upon dehydrobromination afforded excessively stabilized betaine. Thermal reaction of the title phosphorane with diphenylketene qave 5,8,8-triphenylbenzolclheptafulvene which is condensed with cyclopropene ring.

During the couse of the study of the title phosphorane (3) , we found that thermal isomerization of the HBr salt of 3 (2) and thermal reaction of 3 with diphenylketene afford 5,8,8-triphenylbenzo[c]heptafulvene derivatives, $\frac{5}{\sqrt{5}}$ and $\frac{14}{\sqrt{6}}$, respectively. These reactions are worthwhile as simple synthetic routes to benzo[c]heptafulvenes, because only a few synthetic methods have been reported so 1 far, one for berlzo[c]hept;lfulvclle itself and three for its 8,8_disubstituted de-2,3
rivatives. These synthetic routes are also interesting in the point of view of UnUsUal reactions **Of** phosphorous derivatives of four-membered ring compounds,

4
Heating of 2-bromo-3,4-bis(diphenylmcthylene)cyclobutanone (1) and Ph₂P in benzene under reflux for 4 h afforded the **HBr** salt of the title phosphorane, (3,4 bis(diphenylmethylene)-2-oxocyclobutyl)triphenylphosphonium bromide (2) as dark red prisms in 83% yield (mp 220 °C; $v(C=0)$ 1760 cm⁻¹), which upon treatment with NaOCH₃ in CH₃OH afforded the title phosphorane (λ) as orange prisms in quantitative yield (mp 228-229 °C; $v(C=0)$ 1695 cm⁻¹). Heating of crystals of ζ at its melting point for 30 min gave (2-hydroxy-5,8,8-triphenylbenzo[c]heptafulvenyl)triphenylphosphonium bromide (5) as colorless prisms in 82% yield; mp 285–286 °C;

4869

Scheme 1 HBr Br $\ddot{\hat{\epsilon}}$ ł Ş, **-HBr** Ph OH .O $\stackrel{2}{\sim}$ \longrightarrow Ph-+ H $PPh₃$ - \mathtt{PPh}_3 HBZ PPh₃ Br $\frac{5}{2}$ $\frac{6}{3}$ Ph₂C_s Ph Ph OCH $_{2}$. Fh_2C II **X** PPh3 c_{Ph_2} a: $X=FSO₁$ b: $X=ClO_A$ $\overline{\mathcal{X}}$

 \pm v(conjugated OH to Ph₃P group) 3000-2300 cm⁻¹; $\lambda_{\sf max}$ 253 (40000), 294 sh (14200), 5 365 nm (E 6200). A plausible reaction pathway is that proceeds by ring opening accompanied by 1 ,3-hydrogen shift of the intermediate (4) which is initially formed from 2 by the reaction of phenyl to carbonyl carbon (Scheme 1). The carbonyl carbon of $\frac{2}{\alpha}$ might be positively charged because electrons of the carbonyl $^{+}$ oxygen are strongly pulled by $\texttt{Ph}_{3}\texttt{P}$ group through space.

9 $^{\circ}$

76

 8

By treating with water, $\frac{5}{\sqrt{6}}$ is easily dehydrobrominated to give $\frac{6}{\sqrt{6}}$ as yellow prisms; mp 278-278.5 °C; $\sqrt{(-0)}$ 1510 cm⁻¹; λ_{max} 320 (26900), 353 (11200), 385 nm (ϵ 11600). The O-methylation reactions of 6 with CH₃FSO₃ and CH₃I-AgClO₄ which afford $\frac{8a}{30}$ (76% yield; mp 219 °C; λ_{max} 250 (20500), 290 sh (6700), 360 nm (ε 2800)) and $8b$ (97% yield; mp 254 °C), respectively, also support the enolate structure of $6.$ Both the KMnO₄ oxidations of 5 and 6 afforded benzophenone and o-benzoylbenzoic acid. The following facts show that 6 is an excessively stabilized

betaine and does not show reactivity as a phosphonium ylid. Heating of \frak{g} and benzaldehyde in xylene under reflux for 5 h recovered 6 unchanged in quantitative yield. This contrasts with that 3 reacts easily with was also inert to KOH-catalyzed hydrolysis in boiling methanol, even though $\frac{8}{\sqrt{6}}$ 6 benzaldehyde to give $\zeta\cdot-\frac{6}{\sqrt{2}}$. was hydrolyzed under the same conditions to give 2-methoxy-5,8,8-triphenylbenzo-[c]heptafulvene (9) in 79% yield as colorless prisms; mp 180–181 °C; λ_{\max} 245 $\,$ (24400), 298 (23800), 332 nm (c 20600); 1 H NMR $_{6}$ 6.71 and 6.38 (each s, =CH), 3.35 (s, OCH₃). As we are aware, no strongly stabilized betaine such as 6 has been re-7 ported except some stable aromatic betaines like $^{10}_{\Lambda\Lambda}$. However, it is not clear why 6 is strongly stabilized.

Heating of 2 and diphenylketene in xylene under reflux for 1 h also afforded 5,8,8-triphenylbenzo[c]heptafulvene derivative $(1,4)$ as colorless prisms in 43% yield; mp 246-247 °C; λ_{max} 245 (21600), 294 (19500), 328 nm (ϵ 17800); 1 H NMR $_\text{6}$ 6.00 (s, =CH); 13 C NMR δ 53.5 (s, CPh₂); m/e (relative intensity) 548 (M⁺, 100), 381 (M^+ - Ph₂CH, 44), 167 (Ph₂CH⁺, 38). A plausible reaction pathway is shown in Scheme 2. Thermal cycloaddition of diphenylkctene to the carbonyl of λ gives β lactone intermediate (λ_k) . Ring expansion of the β -lactone of λ_k accompanied by the attack of phenyl to the four-membered ring carbon gives &-lactone intermediate

 $(\frac{1}{6}, \frac{2}{6})$, which is then converted into $\frac{1}{6}$. Thermal degradation of $\frac{1}{6}$ finally afford: $\frac{1}{6}$, Ph₃PO (isolated), and CO. It is interesting that diphenylketene attacks on the carbonyl but not on the phosphonium ylid moiety of λ . It is probably due to steric control, because ketene reacted with $\mathfrak z$ at room temperature and afforded naphthocyclobutanone derivative (\downarrow 6a) as yellow prisms in 62% yield; mp 218-219 °C; v(C=O) 1760 cm $^{-1}$; $\lambda_{\sf max}$ 253 (39400), 285 (25300), 324 (42900), 382 (14800), 430 nm (ε 13400). This reaction probably proceeds via the allene intermediate (15a) which is produced by normal phosphonium ylid-ketene reaction. Reaction of

phenylisocyanate and λ also gave naphthocyclobutanone derivative (λ (k)) as orange prisms in 64% yield; mp 248-249 °C; v(C=O) 1750 cm^{-1} ; λ_{max} 248 (34900), 282 sh (29300), 344 (21900), 413 (17300), 453 sh nm (ϵ 10200).

REFERENCES AND NOTES

- 1. D. J. Bertelli and C. C. Ong, J. Am. Chem. Soc., 87, 3719 (1965).
- 2. For 8,8-dicyano derivatives: (a) Y. Suyiyama, K. Iino, H. Soma, and Y. Kishida, Chem. Pharm. Bull. Japan, 20, 2515 (1972); (b) S. Kosuge, T. Morita, and K. Takase, Chem. Lett., 1975, 733.
- 3. For 8,8-diphenyl derivative: H. Staudinyer, "Die Ketene", Enke, Stuttgart (1912) .
- 4. F. Toda and K. Akagi, Tetrahedron, 27, 2801 (1971).
- 5. IR, UV, and NMR spectra were measured in Nujol mull, CHCl₃, and CDCl₃, respectively.
- 6. F. Toda and T. Kataoka, Chem. Lett., 1972, 173.
- 7. A. W. Johnson, "Ylid Chemistry", Academic Press, New York and London (1966 P. 50.

(Received in Japan 25 August 1980)

4872